US009246938B2

a2z United States Patent (10) Patent No.: US 9,246,938 B2
Alme 45) Date of Patent: Jan. 26, 2016
(54) SYSTEM AND METHOD FOR DETECTING 7,421,498 B2* 9/2008 Packer ......... GO6F 17/30867
MALICIOUS MOBILE PROGRAM CODE 707/E17.109
2004/0088570 Al* 5/2004 Robertsetal. ................ 713/201
. . 2006/0075468 Al* 4/2006 Boneyetal. ... 726/2
(75) TInventor: Christoph Alme, Paderborn (DE) 2006/0075494 Al* 4/2006 Bertman ........... GO6F 21/552
726/22
(73) Assignee: MecAfee, Inc., Santa Clara, CA (US) 2006/0075500 Al 4/2006 Bertman et al.
2006/0190561 Al* 82006 Conboyetal. ................ 709/217
(*) Notice:  Subject to any disclaimer, the term of this %88?; 83555;;5 ﬁ} L ! igggg ]SDiXOHt et ta!ﬂ S
: : prosts et al. ...
%atselg llssixée%de(ll 4?{1 Ziju“ed under 33 2007/0240217 Al* 10/2007 Tuvelletal. ............... 726/24
S.C. 154(b) by ys. 2008/0133540 Al*  6/2008 Hubbard .............. HO4L 63/101
/1
(21) Appl. No.: 11/738,703
(22) Filed Aot 23. 2007 FOREIGN PATENT DOCUMENTS
iled: pr. 23,
EP 1510945 Al 3/2005
> Prior Publication Data WO WO-2000099282 A2 92000
US 2008/0263659 Al Oct. 23, 2008
OTHER PUBLICATIONS
(51) Int.ClL w " .
GO6F 11/00 (2006.01) European. Application Serle,l,l No. 081549974, European Search
GO6F 12/14 (2006.01) Europe;n ApII{)hca.tlo(Iil Nqi (()18 1i/[549gz.42,0?011m4m0ns to Attend Oral
roceedings Received mailed May 31, , 4 pgs.
GO8B 23/00 (2006.01) European Application No. 08154997.4, Communication Pursuant to
HO4L 29/06 (2006.01) Article 94(3) EPC, mailed May 20, 2009, 1 pg
GOG6F 21/56 (2013.01) ’ ’ ’ '
(52) US.CL * cited by examiner
CPC .............. HO4L 63/145 (2013.01); GOG6F 21/56
(2013.01); GO6F 2221/2115 (2013.01); GO6F Primary Examiner — Ashok Patel
2221/2119 (2013.01); HO4L 63/0236 (2013.01) Assistant Fxaminer — Daniel Potratz
(58) Field of Classification Search .
CPC ......... HO4L, 63/145; HOAL 63/1441_63/1483; (/) Attorney, Agent, or Firm — Blank Rome LLP
HO4L 63/12; HO4L 63/123; HO4L 63/126;
’ ’ ’ 57 ABSTRACT
HO4L 51/12; HO4L 51/34; HO4L 51/585; 7)
GOGF 21/50; GOG6F 21/56-21/568; GOGF A system and method of detecting malware. A program file is
17/30864; GO6F 2221/2119 received and analysis performed to identify URLs embedded
USPC oottt 726/22, 24 in the program file. The URLs are categorized as a function of
See application file for complete search history. a URL filter database and a malware probability is assigned to
each URL identified. A decision is made on how to dispose of
(56) References Cited the program file as a function of the malware probability of
one or more of the URLs identified. In one example approach,
U.S. PATENT DOCUMENTS a malware type is also assigned to the program file as a
6,085,229 A * 7/2000 Newman et al. ooooovvon.. 709/203 function of one or more of the URLs identified.

6,615,242 B1* 9/2003 Riemers HO4L 12/585

709/206

YES

CATEGORIZE
URL(S)

ASSIGN MALWARE
PROBABILITY TC URL(S)

USER REQUESTS
PRCGRAM FILE
RECEIVE REQUESTED
PROGRAM FILE

DISASSEMBLE OR
DECODE

BEHAVIORAL ANALYSIS

RL(S) DETECTED

16 Claims, 3 Drawing Sheets

158

CHECK FOR URL(S) IN
DATA AREAS?

L

ASSIGN MALWARE
PROBABILITY TO URL(S) | 168

DETERMINE OVERALL
MALWARE PROBABILITY | 170

DISPOSE OF PROGRAM

FILE 172



U.S. Patent Jan. 26, 2016 Sheet 1 of 3 US 9,246,938 B2

_— 110
GOOD
SERVER _— 110
MALICIOUS
GOOD SERVER
SERVER
108
100

it -
| |
i ANTI- | 112 ;
| MALWARE ~ 105 |
i FILTER |
' |
| 114 |
i 1 - !
| MALWARE URL FILTER[ ™16 |
| |
i I
| ! _— 104 |
i I I i
i !
, _— 102 _— 102
! CLIENT CLIENT |
| COMPUTER COMPUTER i
| |
' |



U.S. Patent Jan. 26, 2016 Sheet 2 of 3 US 9,246,938 B2

USER REQUESTS
PROGRAM FILE 150

!

RECEIVE REQUESTED 152
PROGRAM FILE g

T v ¥
DISASSEMBLE OR 154
DECODE o

!

BEHAVIORAL ANALYSIS [~ 196

158

YES NO

URL(S) DETECTED?

NO
CATEGORIZE g ANALYSIS DONE?
URL(S) 160 164

¢ YES
ASSIGN MALWARE | __ CHECK FOR URL(S) IN e
PROBABILITY TO URL(S) [ 162 DATA AREAS?

!

ASSIGN MALWARE [
PROBABILITY TO URL(S) | 168

'

DETERMINE OVERALL [—
MALWARE PROBABILITY | 170

Y

DISPOSE OF PROGRAM |~
FILE 172

FIG. 2 :




U.S. Patent Jan. 26, 2016 Sheet 3 of 3 US 9,246,938 B2

USER REQUESTS
PROGRAM FILE 200

Y

RECEIVE REQUESTED
PROGRAM FILE

Y

DISASSEMBLE OR _— 204
DECODE

Y

EMULATE?

1 FIND FUNCTION CALLS
208

URL(S) PRESENT?

CATEGORIZE THE URL(S) ’\212

v
ASSIGN MALWARE | — 244
PROBABILITY
NO
Y _— 218
CHECK URL(S) IN DATA
VES ARfAs
UPDATE MALWARE |~ 220
PROBABILITY
|
y y
DISPOSE OF PROGRAM
222 FILE

] FIG. 3



US 9,246,938 B2

1
SYSTEM AND METHOD FOR DETECTING
MALICIOUS MOBILE PROGRAM CODE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is related to computer network secu-
rity, and more particularly, to a system and method for detect-
ing malicious program code.

2. Background Information

Increased access to the Internet has had the unintended
effect of increasing the reach of software programs that cap-
ture personal information of users without their informed
consent (“Spyware”) or that corrupt computers without the
user’s knowledge and informed consent (“Malware™). In
addition, a cottage industry has arisen in software that auto-
matically downloads and displays advertising while an appli-
cation is being used (“Adware”).

Adware primarily comes bundled with no cost (“free-
ware”) or low cost (“shareware”) programs. In the past net-
work administrators have used URL filters to block access to
URLs in the ‘Adware’ or ‘Spyware’ category, but many allow
access to categories in the URL filter product labeled ‘Share-
ware’, ‘“Web Hosting’, etc. Thus, the network administrator
can only partially protect network users from adware and
spyware; the download of the hosting freeware or shareware
executable will be allowed, but after installation, its outbound
connections to the Ad servers will be forbidden by the URL
filter. No ads will be shown but the adware program is still
installed and may cause system instability or, other, undesired
behavior on the part of the hosting application (and/or the web
browser).

Adware and spyware can also be retrieved indirectly
through a so-called “downloader” malware, a small malware
stub that, upon successful infection of a client, downloads the
actual (and bigger) malware that it wants to run on its host.
Downloaders are often spread via E-mail, but could also reach
the client by visiting a prepared web site with a vulnerable
web browser. Once more, the delayed download of the actual
adware or spyware may be blocked, but the initial infection is
not prevented if the Anti Virus vendor has not yet distributed
the signatures required to detect the (maybe new) downloader
variant.

In addition, access to, or monitoring of access to, certain
URL categories may be permitted in some situations but
forbidden in others, depending on the host application that
performs such action. For example, access to an online-bank-
ing site is valid when done from within the end-user’s web
browser, but the grant of'access to, or the monitoring of access
to such a sensitive site is suspicious when done from within
some mobile code that the end-user downloaded. Such activ-
ity may indicate the presence of a keylogger, “password-
stealer” or other form of spyware.

“Mobile code” refers to any runnable program code that
can be downloaded from the internet via any web protocol,
and will be executed on the downloading client later—either
automatically (for example, a script or applet embedded into
an HTML page) or manually (for example, a Windows
executable downloaded by the user).

Past mechanisms for limiting the downloading of mali-
cious mobile code included the use of a signature-based Anti-
Malware solution. Such a solution detects known adware or
spyware programs or programs infected with known adware
or spyware programs. Such an approach is, however, solely a
reactive measure.

10

15

20

25

30

35

40

45

50

55

60

65

2

A second approach is to forbid end-users from download-
ing any mobile code. Such an approach increases helpdesk
calls, however, as users seek to whitelist required program
downloads.

What is needed is a system and method for limiting the
downloading of adware, spyware and malicious mobile code.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a system having gateway that detects
malware; and

FIG. 2 illustrates a method of detecting malware by cat-
egorizing embedded URLs; and

FIG. 3 illustrates another example embodiment of a
method of detecting malware by categorizing embedded
URLs.

DETAILED DESCRIPTION OF THE INVENTION

In the following detailed description of the preferred
embodiments, reference is made to the accompanying draw-
ings which form a part hereof, and in which is shown by way
of illustration specific embodiments in which the invention
may be practiced. It is to be understood that other embodi-
ments may be utilized and structural changes may be made
without departing from the scope of the present invention.

A system 100 for limiting the downloading of adware,
spyware and malicious mobile code is shown in FIG. 1. In
system 100 of FIG. 1, one or more client computers 102 are
connected through a local area network 104 to a gateway 106,
and through gateway 106 to Internet 108. Client computers
102 communicate with servers 110 through Internet 108.

In the embodiment shown, one or more servers 110 contain
malicious program code, such as Adware, spyware or mal-
ware. A server that contains, or is addressed by, malicious
program code will be termed a “malicious” server.

In one embodiment, system 100 limits the downloading of
adware, spyware and malicious mobile code by installing a
gateway 106 at the network perimeter, and directing all web
traffic (HTTP(S), FTP, SMTP, and other protocols) from the
client computers 102 (including desktop computers/worksta-
tions and servers, such as E-mail servers for example) to
gateway 106. That is, all client computers 102 are to be served
solely by this gateway 106. In one embodiment, each gateway
106 includes a cluster of several gateway instances.

In the embodiment shown in FIG. 1, gateway 106 includes
an anti-malware filter 112, a URL filter database 116 and a
malware detector 114 connected to the anti-malware filter
112 and the URL filter database 116. The malware detector
114 performs behavioral analysis on the program file to iden-
tify URLs, categorizes the URLs as a function of the URL
filter database 116 and assigns a malware probability based
on the URL categories. The anti-malware filter 112 decides,
based on the malware probability, how to dispose of the
program file.

Inone embodiment downloaded program code is reviewed.
In one embodiment, a list is created of the URLs the program
code will access at run-time (e.g. after installation on client
computer 102) and the URLs the program code will monitor
at run-time. Gateway 106 then looks up these URLs in its
URL filter database and classifies or blocks the download of
the program code according to the categories of the URLs
embedded in it.

In one embodiment, gateway 106 scans the downloaded
mobile code and determines the URLs which may be
accessed by or monitored by the mobile code later or at
run-time. It then classifies the downloaded mobile code



US 9,246,938 B2

3

according to categories assigned to the discovered URL(s)
and assigns a malware probability based on the category of
that URL. If two or more URLs are found, a malware prob-
ability is calculated as a function of the malware probability
of each URL.

In one embodiment, no list of URLs is created. Instead,
whenever a URL is found during a scan of the program code,
it is checked in the URL filter database and a malware prob-
ability assigned based on the category of that URL. Scanning
then continues until no more URLs are found. Again, iftwo or
more URLs are found, a malware probability is calculated as
a function of the malware probability of each URL.

An example embodiment is shown in FIG. 2.

In the example embodiment of FIG. 2, a user requests a
program file at 150. This may be through, for instance, a
browser request for a program file. The program file may be
an executable, applet or other mobile code.

At 152, the program file arrives at malware detector 114.
Malware detector 114 first statically unpacks the mobile code
if necessary. Unpacking may be necessary if the program file
is, for example, a self-extracting Windows executable (ZIP,
RAR, . . .), a runtime-packed Windows executable (UPX,
FSG, MEW, . . .) or a Java archive (JAR).

At 154, detector 114 disassembles native or byte code, or
decodes the script code, found in the inspected mobile code.
Control then moves to 156, where detector 114 performs
static or dynamic behavioral analysis, or both, to detect URLs
embedded in the program file.

In one static behavioral analysis embodiment, disassem-
bly/decoding continues as long as potential function call con-
texts, or behavior patterns, are found. A function call context
is the invocation of a system or an API call together with the
parameters passed along with that call.

In one static behavioral analysis embodiment, at 156,
detector 114 determines potential function calls and their
parameters. The parameter check may include, for example, a
check at 156 to determine if any of the parameters is a string
(in the usual mobile code language-specific encodings, such
as zero-terminated ASCII or UTF-16LE) and if that string
looks like a potential URL (e.g., starts with a known protocol
scheme prefix like ‘http://°, or with ‘www.’, or contains a
known top-level domain optionally followed by a slash or
colon like ‘.com/’, etc.).

If dynamic behavioral analysis is desired, detector 114
emulates at 156 all disassembled/decoded code. Emulation
also allows detector 114, for example, to generically unpack
runtime-packed or encrypted Windows executables regard-
less of the packing or encryption algorithm used.

A check is made at 158 to see if any potential URLs have
been found. If so, control moves to 160, where detector 114
looks up its categories in the URL filter database at and maps
the found URL category or categories (a URL could be
assigned multiple categories) to a malware probability at 162.
Control then moves to 154.

In one embodiment, gateway 106 also includes the option
to propose a malware type. The combination of a malware
type and malware probability can be used by anti-malware
filter 112 to more finely tune its malware filter.

One approach that can be used to assign malware probabil-
ity and malware type is described in the discussion of FIG. 3
below.

Depending on the category, the malware probability can be
raised (or lowered) when the function call is (or is not) a
known network access function (such as Winlnet API func-
tions, or Socket API functions, etc.). The malware probability
derived from this mapping scheme is then added to an overall
malware probability maintained by the calling heuristic Anti-

25

40

45

4

Malware filter, for example using Bayes’ formula. The down-
load is blocked, or replaced by a warning page, when this
overall probability exceeds a configurable threshold.

A check is made at 158 to see if any. If no potential URLs
have been found at 158, control moves to 164, and then to 154
(disassembly/decode) and analysis 158 until all program code
has been inspected.

In one embodiment, malware detector 114 can be config-
ured to find at 166 potential URLs in areas of the inspected
program that are known for containing data.

This is an alternate form of static analysis. The analysis
may be, for example, in a Windows executable’s initialized
data section or string-table resources, in a Java applet’s or
application’s constant string objects or UTF8 string values in
its constant pool, etc. The search can be performed by using a
string searching algorithm, such as Boyer-Moore, to detect
any occurrences of the URL indicators listed above in the
discussion of URL occurrences in function calls.

Areas that contain data that does not directly relate to the
program code should be either ignored or be processed with
lower malware probabilities. For example, data areas contain-
ing digital signature information should not be processed as
they will contain trustworthy URLs such as ‘www.verisign-
.com’, which is also in the ‘Web Hosting/IT Services’ cat-
egory.

Detector 114 then looks up the categories of any URLs
found at 166 in the URL filter database and maps the found
URL categories to a malware probability at 168. In one
example embodiment, detector 114 also can be configured to
propose a malware type as noted above.

Finally, at 170, malware detector 114 determines an overall
malware probability based on the malware probabilities of all
URLSs found to be embedded in the program file.

In one embodiment, malware detector 114 determines a
probable malware type as well. In one such embodiment,
malware detector 114 determines an overall malware type to
be assigned to the program file simply by taking the first best
mapping it makes. For example, an executable may have
embedded URLs of contradictory categories, like one URL
categorized as “Pornography” and another categorized as
“Online Banking”. In one embodiment, malware detector 114
assigns a malware type of either “Dialer” or “Keylogger”,
respectively, depending on which URL is found first.

In another embodiment, one or more URL categories are
assigned both a malware type and a probability that URLs in
that category are associated with that type of malware. For
each URL identified, malware detector 114 looks at the prob-
ability that URLs in that category are associated with thattype
of malware and selects as the overall malware type the mal-
ware type of the first URL with a probability above some
predefined threshold.

In another embodiment, malware detector 114 calculates a
probability “on the fly” and, again, selects as the overall
malware type the malware type of the first URL with a prob-
ability above some predefined threshold.

In yet another embodiment, malware detector 114 looks at
all probable malware types and their associated probability
values and selects the best fit.

At 172, anti-malware filter 112 delivers the program file,
sends a warning page instead or blocks the download,
depending on the overall malware probability and/or malware
type and the user’s, e.g. the network administrator’s, configu-
ration.

Another embodiment of gateway 106 is shown in FIG. 3. In
the example embodiment of FIG. 3, a user requests a program
file at 200. This may be through, for instance, a browser



US 9,246,938 B2

5

request for a program file. The program file may be an execut-
able, applet or other mobile code.

At 202, the program file arrives at filter 112, which trans-
fers the program file to malware detector 114. Detector 114
first statically unpacks the mobile code if necessary. Unpack-
ing may be necessary if the program file is, for example, a
self-extracting Windows executable (ZIP, RAR, . ..), a runt-
ime-packed Windows executable (UPX, FSG, MEW, .. .) or
a Java archive (JAR).

At 204, malware detector 114 disassembles native or byte
code, or decodes the script code, found in the inspected
mobile code. For static behavioral analysis (e.g. without emu-
lation), this disassembly/decoding continues as long as a
potential function call contexts, or behavior patterns, are
found. A function call context is the invocation of a system or
an API call together with the parameters passed along with
that call.

If dynamic behavioral analysis is desired, malware detec-
tor 114 emulates at 206 all disassembled/decoded code. Such
an approach allows malware detector 114, for example, to
generically unpack runtime-packed or encrypted Windows
executables regardless of the packing or encryption algorithm
used.

At 208, malware detector 114 determines potential func-
tion calls and their parameters.

For each potential function call and its associated param-
eter values found, check at 210 if any of the parameters is a
string (in the usual mobile code language-specific encodings,
such as zero-terminated ASCII or UTF-16LE) and if that
string looks like a potential URL (e.g., starts with a known
protocol scheme prefix like ‘http://°, or with ‘www.”, or con-
tains a known top-level domain optionally followed by aslash
or colon like ‘.com/’, etc.).

If any such potential URL is found, look up its categories in
the URL filter database at 212 and map the found URL cat-
egories (a URL could be assigned multiple categories) to a
malware probability at 214. In one such embodiment, detec-
tor 114 also includes the option to propose a malware type
such as the following (category names are exemplary):

Ifthe URL is categorized as ‘Pornography’ or the like, map
to a high malware probability and propose ‘Dialer’ as the
malware type.

Ifthe URL is categorized as ‘Banking/Finances’ or the like,
and the scanned mobile code is not being downloaded from a
site categorized as ‘Banking/Finances’ or the like, map to a
high malware probability and propose ‘Keylogger’ or ‘Pass-
word-Stealer’ as the malware type.

If the URL is categorized as ‘Spyware’, map to a high
malware probability and propose ‘Spyware’ as the malware
type.

Ifthe URL is categorized as ‘Adware’, map to a medium or
high malware probability (depending on configuration) and
propose ‘Adware’ as the malware type.

Ifthe URL is categorized as ‘Malicious Web Sites’, ‘Com-
puter Crime’, ‘Warez’ or the like, map to a high malware
probability.

If the URL is categorized as ‘Web Hosting’ or ‘Private
Homepages’, map to a low malware probability.

In one embodiment, if access to URLs in the found cat-
egory has been configured to be blocked by the user, e.g.
network administrator, propose to warn on the download. In
another embodiment, if access to URLs in the found category
has been configured to be blocked by the user, block the
download.

If the URL is not in a category, then detector 114 reviews
the potential URL string to verify if the string is in all likeli-
hood avalid URL. In one embodiment, malware detector 114

10

15

20

25

30

35

40

45

50

55

60

65

6

verifies whether a potential URL string does in fact denote a

URL using a statistic method to check whether the string

looks “reasonable” enough to be a URL. For example, mal-

ware detector 114 could simply count alphanumeric chars

and non-alphanumeric chars, and define a threshold for their

ratio, so that, for example a string like:
http://A$5/3f1Xe$%.com/5d&%$

is treated as garbage, while a string like:
http://somedomain.com/somepath

is treated as a valid URL string.

In one embodiment, gateway 106 can be configured to
probe servers associated with what appear to be valid URLs.
To do this, gateway 106 attempts to contact the server in order
to request the particular URL. In one such embodiment, gate-
way 106 tries to establish a connection to the specified host in
order to request the URL (if a client for the required protocol
is implemented). In one embodiment, gateway 106 can only
perform this type of investigation for a limited, but config-
urable, number of uncategorized URLs.

If during the investigation the DNS lookup for the specified
host fails, detector 114 maps to a low malware probability and
proposes ‘Downloader’ as the malware type (the domain
name may be reserved for future use by a downloader com-
ponent and/or the actual malware may not yet have been
“activated”).

Ifan HTTP response with status code 404 (“Not Found”™) is
returned and the URL was ensured to be complete, e.g.
including path and parameters if applicable, then detector 114
maps to a low malware probability and proposes ‘Down-
loader’ as the malware type.

If any content is returned, and its media type points to
potential mobile code such as a Windows executable or Cabi-
net archive (CAB), then detector 114 maps to a medium
malware probability and proposes ‘Downloader’ as the mal-
ware type.

In one such embodiment, if any content is returned,
depending on its media type, detector 114 applies a config-
urable set of filters onto the delivered content, up to a config-
urable recursion depth. Detector 114 then maps to a respec-
tive malware probability and proposes a malware type based
on the filters’ result.

In one embodiment, detector 114 uses aggressive timeouts,
thresholds, and anonymization where possible to reduce the
ability of attackers to recognize gateway 106 (for example, as
a preparatory step for a product-specific attack) or to perform
Denial of Service attacks against it.

Ifthe URL is not categorized, and access to uncategorized
sites is configured to be blocked, then thoroughly check if the
potential URL string is really a valid URL. Ifthe URL is in all
likelihood a URL, in one embodiment, gateway 106 proposes
to warn on the download. In another embodiment, filter 112
proposes to block the download.

Depending on the category, the malware probability can be
raised (or lowered) when the function call is (or is not) a
known network access function (such as Winlnet API func-
tions, or Socket API functions, etc.). The malware probability
derived from this mapping scheme is then added to an overall
malware probability maintained by the calling heuristic Anti-
Malware filter, for example using Bayes’ formula. The down-
load is blocked, or replaced by a warning page, when this
overall probability exceeds a configurable threshold.

Continue with 204 (Disassembly) until all program code
has been inspected.

In one embodiment, detector 114 tries at 218 to find poten-
tial URLs in areas of the inspected program that are known for
containing data. This may be done in place of, or in addition
to, emulation at 206. This analysis may be performed, for



US 9,246,938 B2

7

example, in a Windows executable’s initialized data section
or string-table resources, in a Java applet’s or application’s
constant string objects or UTF8 string values in its constant
pool, etc. The search can be performed by using a string
searching algorithm, such as Boyer-Moore, to detect any
occurrences of the URL indicators listed above in the discus-
sion of URL occurrences in function calls.

Areas that contain data that does not directly relate to the
program code should be either ignored or be processed with
lower malware probabilities. For example, data areas contain-
ing digital signature information should not be processed as
they will contain trustworthy URLs such as ‘www.verisign-
.com’, which is also in the ‘Web Hosting/IT Services’ cat-
egory.

Detector 114 then looks up the categories in the URL filter
database and maps the found URL categories to a malware
probability at 220 and, optionally, proposes a malware type,
similar to the process described above.

Finally, at 222, anti-malware filter 112 delivers the pro-
gram file, sends a warning page instead or blocks the down-
load, depending on the overall malware probability and the
user’s, e.g. the network administrator’s, configuration.

The approach discussed above allows the network admin-
istrator to block adware and spyware—and other mobile code
that potentially accesses, or monitors access to, unwanted or
sensitive URL categories. The program code is intercepted
when it (or its hosting application) is being downloaded,
rather than (if at all) blocking only its communications after it
has infected a client. Thereby, the initial malware infection of
the client can be avoided.

In contrast to the past approaches, this solution is not solely
reactive, as it can also detect new, yet unknown variants of
malware as long as its addressed URLs are known. In addi-
tion, it does not require to block downloading of all mobile
code, making it easier to maintain. Furthermore, it protects
earlier, e.g. against the initial infection, rather than only
blocking the communication of an infected client, does not
need to care about how to clean the infection on a client and
does not require client-side deployment. Finally, it does not
need to care about how to protect a client-side component
against being disabled by a malware and does not require
frequent updates in addition to the maintenance of the URL
filter database.

This approach applies the categorization knowledge of a
URL filter database onto mobile code content. By using this
invention during download of mobile code, one can avoid or
mitigate infection of clients with content that addresses
unwanted sites, where ‘unwanted’ can depend on the context
from which the site is accessed. For example, access to sites
can be blocked anyway so the downloaded program can’t
operate on the client as intended. In addition, access to or
monitoring of sites for which such action should not occur
from within a downloaded program (like online-banking
sites) is prevented.

In the above discussion, the term “computer” is defined to
include any digital or analog data processing unit. Examples
include any personal computer, workstation, set top box,
mainframe, server, supercomputer, laptop or personal digital
assistant capable of embodying the inventions described
herein.

Examples of articles comprising computer readable media
are floppy disks, hard drives, CD-ROM or DVD media or any
other read-write or read-only memory device.

Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
skill in the art that any arrangement which is calculated to
achieve the same purpose may be substituted for the specific

10

15

20

25

30

35

40

45

50

55

60

65

8

embodiment shown. This application is intended to cover any
adaptations or variations of the present invention. Therefore,
it is intended that this invention be limited only by the claims
and the equivalents thereof.

What is claimed is:

1. A method of detecting malware, comprising:

receiving a program file;

performing, by a malware detector comprising executable

instructions, analysis on the program file to identify a
plurality of URLs;

associating, by the malware detector, a category with each

of the plurality of URLs as a function of a URL filter
database;

assigning, by the malware detector, a malware probability

and a malware type to each of the plurality of URLs
responsive to the category associated with each of the
plurality of URLs, wherein the malware type describes a
function of malware associated with the category asso-
ciated with that URL;

calculating a malware type probability associated with the

malware type of each of the plurality of URLs, the mal-
ware type probability comprising a probability that
URLs in the category associated with that URL are
associated with the malware type;

assigning an overall malware type to the program file cor-

responding to the malware type of a first URL of the
plurality of URLs having a malware type probability that
exceeds a predetermined threshold value; and
deciding how to dispose of the program file based atleast in
part on the overall malware type of the program file; and

wherein the malware probability and the malware type of
each of the plurality of URLs are assigned without
accessing content pointed to by that URL unless that
URL is uncategorized by the URL filter database, in
which case accessing content pointed to by that URL in
order to assign the malware probability and the malware
type to that URL.

2. The method of claim 1, wherein performing analysis
comprises performing a static behavioral analysis by

searching for function calls and identifying any URLs

passed with the function calls.

3. The method of claim 1, wherein performing analysis
comprises performing dynamic behavioral analysis by emu-
lating code in the program file.

4. The method of claim 1, wherein associating a category
with each of'the plurality of URLs as a function ofa URL filter
database comprises:

determining if a URL is not in the URL filter database and,

if the URL is not in the URL filter database, querying a

server of the URL for information.

5. A gateway, comprising:

a hardware processor;

an anti-malware filter, comprising executable instructions;

a URL filter database; and

a malware detector, comprising executable instructions,

connected to the anti-malware filter and the URL filter
database;

wherein the malware detector is configured to:

perform analysis on a program file to identify a plurality
of URLs;
associate a category with each of the plurality of URLs
as a function of the URL filter database;
assign a malware type to each of the plurality of URLs,
wherein the malware type describes a function of malware
associated with the category associated with that URL;



US 9,246,938 B2

9

assign a malware probability to each of the plurality of
URLs, based on the category associated with that
URL,;
calculate a malware type probability associated with the
malware type of each of the plurality of URLs, the
malware type probability comprising a probability
that URLSs in the category associated with that URL
are associated with the malware type;
assign an overall malware type to the program file cor-
responding to the malware type of a first URL of the
plurality of URLs having a malware type probability
that exceeds a predetermined threshold value; and
wherein the anti-malware filter is configured to decide,
based at least in part on the overall malware type of the
program file, how to dispose of the program file, and
wherein the malware probability and the malware type of
each of the plurality of URLs are assigned without
accessing content pointed to by that URL unless that
URL is uncategorized by the URL filter database, in
which case accessing content pointed to by that URL in
order to assign the malware probability and the malware
type to that URL.

6. The gateway of claim 5, wherein the analysis of the
program file is a static behavioral analysis.

7. The gateway of claim 6, wherein the static behavioral
analysis comprises searching for function calls and identify-
ing any URLSs passed with the function calls.

8. The gateway of claim 5, wherein the analysis comprises
searching for URLs in data areas.

9. The gateway of claim 5, wherein the analysis comprises
dynamic behavioral analysis.

10. The gateway of claim 9, wherein the dynamic behav-
ioral analysis comprises emulating code in the program file
by the malware detector.

11. The gateway of claim 5, wherein the malware detector
is further configured to determine if a URL of the plurality of
URLSs is not in the URL filter database and, if the URL is not
in the URL filter database, query a server for URL informa-
tion.

12. A non-transitory machine readable medium, on which
are stored instructions, comprising instructions that when
executed cause a machine to:

identify, by a malware detector, a plurality of URLs in a

program file;

associate, by the malware detector, a category with each of

the plurality of URLs as a function of a URL filter
database;

10

15

20

25

30

35

40

45

10

assign, by the malware detector, a malware probability and
a malware type to the URL based at least in part on the
category associated with that URL, wherein the malware
type describes a function of malware associated with the
category associated with that URL;
calculate a malware type probability associated with the
malware type of each of the plurality of URLs, the mal-
ware type probability comprising a probability that
URLs in the category associated with that URL are
associated with the malware type;
assign an overall malware type to the program file corre-
sponding to the malware type of a first URL of the
plurality of URLs having a malware type probability that
exceeds a predetermined threshold value; and

determine how to dispose of the program file based at least
in part on the overall malware type of the program file,

wherein the malware probability and the malware type of
each of the plurality of URLs are assigned without
accessing content pointed to by that URL unless that
URL is uncategorized by the URL filter database, in
which case accessing content pointed to by that URL in
order to assign the malware probability and the malware
type to that URL.

13. The machine readable medium of claim 12, wherein the
instructions further comprise instructions that when executed
cause the machine to: calculate a malware probability for the
program file as a function of the malware probabilities of each
of the plurality of URLs.

14. The machine readable medium of claim 12, wherein the
instruction that when executed cause the machine to identify
a URL in the program file comprise instructions that when
executed cause the machine to:

search a data area for a URL.

15. The machine readable medium of claim 12, wherein the
instruction that when executed cause the machine to identify
a URL in the program file comprise instructions that when
executed cause the machine to:

perform a dynamic behavioral analysis of the program file.

16. The machine readable medium of claim 12, wherein the
instruction that when executed cause the machine to associate
acategory withthe URL using a URL filter database comprise
instructions that when executed cause the machine to:

search for the URL in the URL filter database; and

query a server for information associated with the URL

responsive to not finding the URL in the URL filter
database.



